Visualizing Uncertainty in Predicted Hurricane Tracks
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Abstract— While the error cone display produced by the National Hurricane Center is one of the primary tools used by officials,
and the general public, to make emergency response decisions, the uncertainty underlying this display can be easily misunderstood.
This paper explores the design of a display that provides a continually updated set of possible hurricane tracks, whose ensemble
distribution closely matches the underlying statistics of a hurricane prediction. We present this as a work in progress, explaining the
underlying algorithm and data structures, and demonstrating what our displays look like. Finally, we describe the design of a user
study that we plan for the near future, to test the efficacy of our approach in communicating predicition uncertainty.
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1 INTRODUCTION

Although the past 30 years have seen major advances in the scientific
understanding of hurricane forecasting, there has been a lack of sys-
tematic research on people’s comprehension of the displays used to
show these forecasts. Such work must be closely tied to data and pre-
dictions available from the National Hurricane Center [3]. The Center
issues advisories every six hours during the life of a hurricane. An ad-
visory provides the current position of the hurricane, the speed, current
bearing, wind speed, and a prediction of the hurricane’s position and
intensity over the next five days. The positions are given in 12 hour
increments for the first three days, and then in 24 hour increments over
last two days. The Center also makes historical hurricane data, dating
back to 1851, publicly available from its website. This dataset includes
the latitude, longitude, speed, and bearing at six hour increments for
the life of each historical track.

One of the primary visual aids provided by the National Hurricane
Center is the error cone. An example of an error cone, also commonly
referred to as the cone of uncertainty, is shown in Fig. 1. The center
line represents the predicted hurricane track. The width of the cone is
determined using historical forecast errors over a five year sample, and
represents a 67% likelihood region for the actual hurricane track [4].

Some researchers have concluded that many people misinterpret the
probabilistic concepts that are being communicated by the error cone
[1]. The first problem is that the error cone tends to give the impression
to those inside the cone that they have an exaggerated chance of being
in the hurricane’s path, while those outside of the cone tend to feel
a false sense of security. In addition, it is very easy to misinterpret
the cone as the region that will experience the effects of the hurricane,
rather than as the region through which the hurricane path will likely
pass.

To address these potential problems with the error cone visualiza-
tion, we are investigating a new method that attempts to disaggregate
the statistics of the error cone, in order to show the diversity and distri-
bution of hurricane tracks that it might subsume. Our approach uses a
display that is continuously being updated with candidate path predic-
tions that are drawn from the distribution of likely paths represented
by the error cone. We generate possible hurricane tracks, which are
composited over each other, and fade out with time. Our approach is
a work in progress for which we are planning a thorough user study.
Our assumption is that this type of display will be superior to the error
cone in allowing subjects to more accurately predict the likelihood of
a hurricane to affect a particular area, as indicated by their ability to
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describe the strike probability distribution indicated by the display.

The goal is to produce a display that shows a wide range of pos-
sible outcomes, while maintaining the statistical characteristics of the
error cone. Simply generating these hurricane paths according to a
Gaussian distribution about the predicted path would not be correct
for two reasons. The first is the level of diversity. While hurricanes
often track the predicted path, extreme deviations are not uncommon.
Fig 2 shows all of the hurricane tracks in the Gulf of Mexico region
since 1945. While some patterns can be seen in this historical data, the
most salient characteristic is that the behavior of individual hurricanes
can vary widely. The second is that we have no reason to assume that
the area of prediction is normally distributed [NHC Reference]. In our
work we use both the projected path of a hurricane as well as historical
data to achieve a desirable level of path diversity.

2 BACKGROUND
2.1 Previous Studies

Clearly visualization tools that communicate information on the pa-
rameters and uncertainties of hurricane predictions need to be de-
signed in formats that users are able to process quickly and effectively.
While several visualization tools are available that describe the various
parameters of a hurricane advisory, Broad et al. [1] have shown that
the error cone is most widely used by officials and the general public
as a means of evaluating the progress and prediction of a hurricane.
Unfortunately, an evaluation of the available products during the 2004
Florida hurricane season showed that for many the error cone was not
clearly communicating the probabilistic nature of the hurricane pre-
diction or its potential path [6]. Not only was an inappropriate level of
confidence assigned to the area within the cone, but in many cases the
very nature of the cone and predicted track where misunderstood.

Despite its importance to officials and the general public, little has
been done to test the interpretability or to develop alternatives that are
likely to be better understood. There has some work on other issues
related to hurricane prediction. For example, Steed et al. [5] presented
an illustrated visualization method that displayed a hurricane’s previ-
ous track and wind swath area by processing all of the advisories over
the life of a hurricane. Martin et al. [2] presented a study that exam-
ined a user’s ability to effectively judge the magnitude and direction
of a hurricane’s winds as a two dimensional vector field. While both
showed interesting results, neither visualized the uncertainty associ-
ated with a hurricane prediction as a part of their method. We know
of no other work developing alternative displays that attempts to show
the natural uncertainty associated with hurricane predictions while still
describing the most probable path.

2.2 Computing Distance and Direction on the Earth’s Sur-
face

All of the calculations used in our algorithm take into account the cur-
vature of the Earth. These calculations are well known [7], but summa-
rized here for convenience. To conform to the standards of navigation,
a bearing of 0° is true north, and increases clockwise through 360°.
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Fig. 2: Historical Hurricane Tracks Since 1945

Latitude is 0° at the equator, and 90° at the North Pole. Longitude is
0° at the Greenwich Meridian, increasing in the positive direction to
the East. For the following formulas, (¢;, ¥;) represent the latitudinal
and longitudinal coordinates of a point i in degrees, and R = 6371.0
km is the radius of the Earth.

To determine the distance d between two points (@;,7), and
(¢2,,) we use the Haversine formula,

sinz(W) + cos @ cos @, sin’ @,

a =
_ —1_+a
d = 2Rtan NGE)

The bearing from one point to another is given by

-1 sin(% — ¥1) cos @

0 = tan cos @y Sin(PZ_Sin(Pl COS(PZCOS(ﬁZ_ﬁl)

) +180°.

It should be noted that as a path is traveled from an initial position to
a final position, the bearing will change continuously.

Given a starting position (¢;, ¥), initial bearing 0, and distance d
in km, final position (¢, 9¥) is given by
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(b) Our Method

3 METHODOLOGY

Our method of depicting the uncertainty of a projected hurricane track
uses a Monte Carlo process to repeatedly generate possible hurricane
tracks. These tracks overlay one another and fade out over time, which
gives the display a changing and dynamic quality as demonstrated in
the three snapshots shown in Fig 3. Our algorithm uses a time varying
probability density to generate tracks that closely follow the predicted
path, and a Markov model, determined from historical data, to gen-
erate tracks that move away from the prediction. These are used to
iteratively generate three hour sections of a track until the full track
has been completed. Each of our generated tracks is initialized to the
speed and bearing at the start of the current advisory. Once the ini-
tial speed and bearing is determined, a bearing and speed change for
the next section is generated from one of our probability models. This
bearing and speed change is applied to the current speed and bearing
to determine a new position.

As each segment is being generated, we randomly decide which of
these two probability models to use to determine the new bearing and
speed change. We experimentally determined that using the model
based on predicted information 90% of the time and the model based
on historical data 10% of the time yields a set of tracks with statistics
fitting the error cone, while exhibiting the desired diversity of paths.

The rest of this section describes how the predicted path and histor-
ical data are each used to generate the speed and bearing changes that
are applied to each path segment.

3.1 Using Predicted Data

In order to use the prediction from the current advisory for path gen-
eration, we treat the prediction as a time varying probability density
function

p(AB,As|t;Ar),

where A is a random variable representing bearing change, As rep-
resents speed change, ¢ is time since the beginning of the advisory,
and Az is a parameter for the time step over which change takes place.
We discretize the time axis, yielding a set of fixed probability density
functions of the form

i (AB,As; At),

where 7 is the time at the start of a segment.

In order to build these time indexed density functions, we use the
prediction data contained in the advisory. At each time step avail-
able in the prediction, we determine two corresponding points on the
perimeter of the error cone. While the advisory provides location in-
formation for several points along the predicted path, the only initial
information for the error cone is its width at specific points, which is
determined by the National Hurricane Center on a yearly basis. Given



Fig. 3: Our Visualization at Three Different Times for the Same Advisory

a point on the predicted path, the corresponding points on the two sides
of the error cone are uniquely determined by the width of the cone if
we measure out this distance at a bearing of 90° from the predicted
path. Linear interpolation is used on the predicted path and on the
perimeter of the error cone to find sample points along each at three
hour segments. The final bearing, initial bearing and speed at each of
these points is then calculated. To find these values, we look at three
consecutive points on a path segment, p;_1, p;, and p;;1. The speed
at point p; is calculated by finding the distance from p; and p;; and
dividing by the number of hours in the segment (3 hours in our study).
Fig 4 shows how the change in bearing A@ is computed from these
points. The final bearing 8 for p; is found by taking the bearing from
pito pi_1, and adding 180°. The initial bearing 6; for p; is the bearing
from p; to p;y1. The bearing change at each point is just the mini-
mal angular difference between the final bearing and initial bearing.
The speed change is the speed difference between p; and p;_;. These
speed and bearing changes are then used to make a probability density
function for the bearing change and for the speed change at each of the
three hour marks of our advisory.

Di+i
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Fig. 4: Initial Bearing and Final Bearing

We approximate the probability density function governing bearing
change at each time step by estimating the probabilities of a small
set of bearing changes, and interpolating between them. In our work
we are using 100 samples. The central sample value c is set to the
bearing change of the corresponding point on the predicted path. The
minimum and maximum bearing changes sampled are

m =
M

¢+ 1.5(min(A6;,A6,) —c), )
¢+ 1.5(max(A6;,AB,) —c),

where Af; and A6, are the bearing changes on the left and right sides
of the error cone at the current time. Half of the remaining samples
are evenly spaced from m to ¢ with the other half evenly spaced from
¢ to M. Equation 1 provides a support that is 1.5 times the distance

between the minimum and the maximum bearing changes, giving sup-
port outside the error cone. Note that the distance between the samples
on the lower half of the distribution will generally not be the same as
the distance between the samples on the upper half.

The probabilities corresponding to each sample are estimated as

—(A0—c)?

p(Ae) = G\}Ee 207 b

where A0 is the sample value, the standard deviation o is set to m/3
if the sample bearing change is less than c or set to M /3 if it is greater
than c¢. This gives a distribution on each side of the predicted path
that reaches two standard deviations at the error cone edges. Once
the probabilities of each of the samples have all been found, the set of
samples is scaled so that the total area under the curve, estimated using
the trapezoidal rule, is 1.0. Fig 5 shows an example distribution shape,
which will typically not be Gaussian. Speed changes are processed in
exactly the same manner.
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Fig. 5: Time Varying Probability Density Function Using Predicted
Path Data

When using the predicted data to generate the bearing and speed
change for a given segment, the appropriate probability density func-
tion is indexed by the current time. We generate a random number
from O to 1, numerically integrate the probability density function us-
ing the trapezoidal rule until the integration reaches this number, and
return the corresponding bearing. Speed change is computed in the
same way.

The use of the probability density function allows us to generate
speed and bearing changes that tend to create paths falling within the
error cone, with highest density near the center of the cone.

3.2 Using Historical Data

Unlike our treatment of the predicted data, we represent the history
of hurricane paths with a Markov model, which we use to determine
bearing and speed changes given a hurricane’s current location, speed
and bearing. If the bearing change random variable is A@ and the speed
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Fig. 6: Historical Datastructure Grid Cell

change random variable is As, such a model would be summarized by
the conditional probability density function

p(AB,As|0,s,0,9;At),

where 0 is the current bearing, s is the current speed, ¢ is the current
latitude, ¥ is the current longitude, and Ar is a time-step parameter.

In our current method, we make the assumption that change in di-
rection and speed are independent of the hurricane’s current speed,
reducing the conditional probability to

p(AB,As|0,0,;At).

This means that when we consider historical hurricane tracks in build-
ing our model, we need only concern ourselves with the position of the
hurricane and its current bearing. In this way we attempt to preserve
spatially local patterns found in past hurricane activity.

This conditional probability specifies two continuous three dimen-
sional functions, which we discretize, first by sampling over spatial
grid cells, each representing one degree of latitude and one degree of
longitude, and then by bearing, assigning a set of six bins to each grid
cell, each covering 60°. We capture this discretization by construct-
ing a two dimensional data structure over the Gulf coast of the United
States, where the cells can be represented as a rectangular grid on a
Mercator Projection map. Thus, the probability density functions at
cell (i, j), for hurricane paths with bearing in the angular range k are
given by

p”k(A97AS,At)

We estimate these functions for each angular bin, by noting the bear-
ing and speed of each historical path as it enters the grid cell, the time
it spends in the cell, and its bearing and speed when it leaves the cell.
Each entrance and exit constitutes one sample, which we use to con-
struct kernel density estimators for the bearing and speed changes. The
resulting data structure has entries of the form shown in Fig 6.
Although historical hurricane track data is available back to 1851,
in our work we use only data starting from 1945 due to concerns re-
lating to the validity of earlier measurements. Because this data is
generally too sparse to provide adequate samples for our kernel den-
sity estimators, we generate three supplemental parallel paths on each
side of every historical path, as shown in Fig. 7. The parallel paths are
created by stepping along each point of a historical path while gener-
ating three corresponding points at 60 km intervals in both directions
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Fig. 7: Propagation of a Historical Path

perpendicular to the historical path. To assure that actual historical
paths have a greater contribution to the probability density function
than the parallel tracks, every path is assigned a weight value w, with
original historical paths having weight 1.0 and the parallel paths hav-
ing weights 0.75, 0.5, and 0.25.

All of the historical and supplemental paths are intersected with
the spatial grid cells, and used to construct two kernel density esti-
mators for every bin in each grid cell. These approximate the two
required probability density functions governing bearing change and
speed change. Because the point at which a hurricane enters and leaves
a grid cell, as well as its bearing and speed at these respective points,
is not directly available to us through the historical records, we deter-
mine them using linear interpolation.

To build the probability density function for the bearing change, we
must determine the supports of the kernel density estimator in each
bin. To do this, we determine the mean and standard deviation over all
of the bearing changes stored in a bin, and then extend the minimum
and maximum by three standard deviations.

The value of the kernel density estimator, K, for bearing change
A0 for a single bin in a grid cell is computed as a weighted sum of
Gaussian kernels centered over each of the bearing change samples.
Assuming n samples in the bin, and letting w; be the weight and ¢; be
the bearing change of sample i, we have

—(A0—¢;)?

1 & i
wi e 22 ) (2)

K(AB) = W(i)::(‘) o

where W = Y1, w;, and © is the standard deviation of all the bearing
change samples in a bin.

Equation 2 gives the function needed to compute the bearing
change. However, it is not efficient to compute this every time it is
needed, so we discretize and later interpolate when we need a value.
In our algorithm, we use 11 samples evenly spaced across the sup-
ports. To account for discretization error, the curve is finally scaled so
that the area under the curve, computed using the trapezoidal rule, is
1.0. The probability density function for speed changes is computed
in the same manner. An example of a resulting density function is
shown in Fig 8. The horizontal axis represents bearing change. The
green curves show individual samples inside the summation of equa-
tion 2. The area under a green curve indicates its weight. The red
curve displays the final interpolated kernel density estimator.

When it is determined that historical data should be used to predict
the bearing and speed change for a given segment, the appropriate bin
is determined from the generated path’s current location and bearing.
The latitude and longitude indicate the grid cell while the bearing in-
dicates the bin. The bearing and speed probability density functions
from that bin are then used to generate a speed and bearing change that
is consistent with the historical data.



Fig. 8: Example Kernel Density Estimator Construction

4 PROPOSED STUDY

We are planning an experiment which aims to test for any differ-
ences in how users estimate the hurricane strike probability distribu-
tion when using our visualization method compared to using the error
cone. Our hypothesis is that with our method, they will show a broader
distribution of probabilities, which more closely reflect the uncertainty
inherent in a hurricane advisory. To test this, a sequence of historical
advisories will be displayed to participants. Each advisory will be
shown twice, once with the error cone and once with our visualization
method. The order of the advisories will be randomized and identical
advisories will never be consecutive.
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Fig. 9: Interface for Our Experimental Design

As show in Fig. 9, a map of the Gulf of Mexico region will be dis-
played, with a circle divided into eight sectors centered over the cur-
rent position of the hurricane. The sides of the sectors will be aligned
to the cardinal directions. Users will be asked to place a set of num-
bered chips on the circle to indicate their estimate of the probability
that the hurricane will exit the circle in this sector. Thus, we will be
able to gauge each participant’s ability to estimate probability by mea-
suring the distribution of these chips across all of the sectors.

The chips will have values ranging from 1 to 20, with the cumula-
tive value of all the chips being 100. The interface will assure that each
chip is assigned to exactly one sector. To advance from one advisory
to another, all of the chips must be assigned.

5 CONCLUSION

We have presented a visualization method as an alternative to the error
cone display produced by the National Hurricane Center. Our method
presents an ensemble of continuously updated tracks demonstrating
the range of possible hurricane outcomes. It uses both a hurricane’s
current advisory information and data on historical hurricanes to cre-
ate a dynamic display showing the variety of possible hurricane tracks.

This approach produces tracks that lie both inside and outside the er-
ror cone, while maintaining statistical characteristics similar to those
underlying the hurricane advisory.

One problem that we have encountered with our method is its re-
liance on the current speed and bearing of a hurricane to generate
tracks. In the event that the hurricane is listed as stationary, or if the
current speed and bearing differ widely from the speed and bearing
required to get to the next position listed in the advisory, the statisti-
cal properties of our tracks sometimes diverge from those of the error
cone. In these situations, the paths can become much too widely and
evenly distributed. This problem is currently under study.

Future work will include both refining the algorithm and using it
as a base to support other visualization tools. One idea is to gener-
ate a heat map from the generated tracks, and use it create a three
dimensional display that describes the probability of a hurricane track
in terms of a height field. This could be displayed in a 3D view, or a
section through this view, following the coastline, could be displayed
in 2D. Another possible visualization would be to superimpose our
method over the error cone, so that both summary statistics and de-
tailed outcomes can be viewed. We would like to explore methods to
incorporate other important hurricane information, such as wind speed
and storm shape, into the display. Finally, it would be useful to design
a tool to assist in evacuation decision making, which would require
integrating evacuation and hurricane models.
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